The Synthesis of Size-Adjustable Superparamagnetism Fe3O4 Hollow Microspheres
نویسندگان
چکیده
One hundred fifty to 300-nm-sized monodisperse iron oxide (Fe3O4) hollow microspheres were synthesized by the one-pot hydrothermal method. The morphology and crystal structure of the as-prepared hollow microspheres was characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy, while the magnetic property was investigated by vibrating sample magnetometer. We found that the particle size of the hollow microspheres was related to the amount of sodium citrate, polyacrylamide (PAM), and urea. The hollow structure of Fe3O4 microspheres has high magnetization saturation values ranging in 49.10-75.41 emu/g.
منابع مشابه
One-pot reaction to synthesize PEG-coated hollow magnetite nanostructures with excellent magnetic properties.
We first demonstrate a simple "one-pot" method to synthesis uniform Fe3O4 hollow microspheres in the presence of PEG in ethylene glycol by using urea to control their morphologies. The interior cavity of the hollow spheres can be tunable by reaction time. The Lamer model was used to explain the formation of magnetite hollow spherical structures based on the experimental observations. The obtain...
متن کاملHydrothermal synthesis of 3D hollow porous Fe3O4 microspheres towards catalytic removal of organic pollutants
Three-dimensional hollow porous superparamagnetic Fe3O4 microspheres were synthesized via a facile hydrothermal process. A series of characterizations done with X-ray diffraction, Brunauer-Emmett-Teller method, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy indicated that the production of Fe3O4 microspheres possessed good monodispers...
متن کاملPreparation and Characterization of Thermoresponsive Poly(N-isopropylacrylamide-co-acrylic acid)-Grafted Hollow Fe3O4/SiO2 Microspheres with Surface Holes for BSA Release
Thermoresponsive P(NIPAM-AA)/Fe3O4/SiO2 microspheres with surface holes serving as carriers were prepared using p-Fe3O4/SiO2 microspheres with a thermoresponsive copolymer. The p-Fe3O4/SiO2 microspheres was obtained using a modified Pickering method and chemical etching. The surface pore size of p-Fe3O4/SiO2 microspheres was in the range of 18.3 nm~37.2 nm and the cavity size was approximately ...
متن کاملMagnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles.
Magnetic C-C@Fe3O4 hollow microspheres were prepared by using aerosol-based Fe3O4@C-SiO2 core-shell particles as templates. The magnetic double-shelled microspheres efficiently worked as carriers to load Pt nanoparticles, thus making the catalyst recyclable and reusable.
متن کاملPreparation of Fe3O4@SiO2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications
In this work, we report synthesis of superparamagnetic iron oxide nanoparticles at room temperature using microemulsion template phase consisting of cyclohexane, water, cetyltrimethylammonium bromide CTAB as cationic surfactant and butanol as a cosurfactant. Silica surface modification of the as prepared nanoparticles was performed by adding tetraethoxysilane TEOS to alkaline medium. The struct...
متن کامل